
Kaggle Diabetic Retinopathy Detection competition report

Ben Graham∗

b.graham@warwick.ac.uk

August 6, 2015

1 Overview

The KaggleDiabetic Retinopathy Detection competition ran from February to July 2015. I com-
peted under the team name Min-Pooling, and achieved a �nal Kappa score of 0.84958.

I preprocessed the images using Python and OpenCV to compensate for di�erent lighting con-
ditions. I then classi�ed the images using SparseConvNet1 convolutional neural networks (CNNs)
running on an NVIDIA GPU. Finally, I used Python/Scikit-Learn to train a random forest to
combine predictions from the two eyes into a single prediction, and output the �nal submission �le.

∗Department of Statistics and Centre for Complexity Science, University of Warwick, Coventry, UK
1https://github.com/btgraham/SparseConvNet

1

mailto:b.graham@warwick.ac.uk
http://www.kaggle.com/
https://www.kaggle.com/c/diabetic-retinopathy-detection
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/graham/
https://github.com/btgraham/SparseConvNet

2 Software

To evaluate photographs of the retina using this method, access the �kaggle_Diabetic_Retinopathy_competition�
branch of the SparseConvNet (GPL v3) GitHub repository:

github.com/btgraham/SparseConvNet/tree/kaggle_Diabetic_Retinopathy_competition

• The �les kaggleDiabetes{1-3}.cpp contain the CNN con�guration.

• The directory Data/kaggleDiabeticRetinopathy/ contains scripts for image preprocessing and
model-averaging.

• Weight for trained networks can be made available via Dropbox.

Just in case anyone feels like taking a picture of their eyes with a smartphone, and then using some
software they just downloaded from the internet to self-diagnose, I will point out that the GPL
contains a disclaimer! See Figure 1.

Figure 1: Please note Section 15 of the GPL license: THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PAR-
TIES PROVIDE THE PROGRAM �AS IS� WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

2

github.com/btgraham/SparseConvNet/tree/kaggle_Diabetic_Retinopathy_competition

3 Cohen's Kappa

The competition was scored using Cohen's quadratically weighted Kappa function, which takes
integer predictions to produce a measure of similarity between the submitted ratings and the expert
ratings. Averaging the output of the random forests produces a �oating-point valued rating for each
eye between 0 and 4. These need to be rounded to give an integer. The quadratic weights introduce
an element of optimization into the rounding process: if an eye is probably a zero, but could be
a 1 or a 2, you may be better o� predicting 1 to avoid the possibility of getting a penalty of 22.
In practice, you just have to determine �threshold� values to decide where to switch from rounding
down to rounding up. See Figure 2.

Random forest prediction in the range [0,4]

F
re

qu
en

cy

0 1 2 3 4

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Figure 2: Distribution of predictions produced using random forests to combine left/right eye
predictions. These predictions are divided in the classes 0,1,2,3,4 using the threshold values
{0.57, 1.37, 2.30, 3.12}.

3

As I am not very familiar with Kappa scores, I was curious as to how much the private leader-
board would di�er from the public leaderboard. See Figure 3. β is almost exactly one, so there is
no regression towards the mean. Instead, �nal leaderboard scores are fairly uniformly a little lower
than the public ones.

●
●

●
●

●●
●

●●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●●

●●●●●

●●

●●

●●

●
●

●

●

●

●
●

●●

●

●
●●

●

0.65 0.70 0.75 0.80 0.85

0.
65

0.
70

0.
75

0.
80

0.
85

Public leaderboard

P
riv

at
e

le
ad

er
bo

ar
d

Figure 3: Comparison of public/private weighted Kappa scores for teams �nishing in public leader-
board top-50. Fitting a linear regression model (�line of best �t�) gives

Private = α+ β × Public +N(0, 0.0052572),

α = −0.008633(±0.007952), β = 1.00239(±0.010628).

4

4 Image preprocessing

I preprocessed the images using OpenCV to

1. rescale the images to have the same radius (300 pixels or 500 pixels),

2. subtracted the local average color; the local average gets mapped to 50% gray,

3. clipped the images to 90% size to remove the �boundary e�ects�.

This was intended to remove some of the variation between images due to di�ering lighting condi-
tions, camera resolution, etc. Here are two before/after examples.

Image: 13_left
Rating: 0

Image: 16_left
Rating: 4

Figure 4: Two images from the training set. Original images on the left and preprocessed images
on the right.

5

Algorithm 1 OpenCV Python code to preprocess the images.

import cv2 , glob , numpy
de f s ca l eRad ius (img , s c a l e) :

x=img [img . shape [0] / 2 , : , :] . sum(1)
r=(x>x .mean () / 1 0) . sum()/2
s=s c a l e ∗1 .0/ r
re turn cv2 . r e s i z e (img , (0 , 0) , fx=s , fy=s)

s c a l e =300
f o r f in g lob . g lob (" t r a i n /∗ . jpeg ")+glob . g lob (" t e s t /∗ . jpeg ") :

t ry :
a=cv2 . imread (f)
#s c a l e img to a given rad iu s
a=sca l eRad ius (a , s c a l e)
#subt rac t l o c a l mean co l o r
a=cv2 . addWeighted (a , 4 ,

cv2 . GaussianBlur (a , (0 , 0) , s c a l e /30) ,−4 ,
128)

#remove outer 10%
b=numpy . z e r o s (a . shape)
cv2 . c i r c l e (b , (a . shape [1] / 2 , a . shape [0] / 2) ,

i n t (s c a l e ∗0 .9) , (1 , 1 , 1) , −1 ,8 , 0)
a=a∗b+128∗(1−b)
cv2 . imwrite (s t r (s c a l e)+"_"+f , a)

except :
p r i n t f

6

5 Data augmentation

SparseConvNet can augment training and test images as the batches are formed, using OpenCV's
warpA�ne function. For training, the images are

1. randomly scaled by ±10%

2. randomly rotated by between 0◦ and 360◦ degrees,

3. randomly skewed by ±0.2.

For testing, the images are just rotated randomly.
I tried adding color-space transformation to the data-augmentation space. However, this did

not seem to help. Perhaps because the images are already preprocessed to have zero-mean in any
local region.

6 Network con�gurations

Given a single test image, you can attempt to classify it several times:

• using the same network, but randomly rotating the image, and/or

• using independently trained networks.

The results of the multiple tests are then averaged to give a single prediction. This kind of en-
sembling often yields substantial improvements in terms of accuracy, albeit with an increase in the
complexity and computational cost. Even adding fairly weak networks to an ensemble can improve
performance 2.

I trained a number of models and evaluated them on a (quite small) validation set of 1000
images. Combining the models seemed to o�er very limited bene�t. I decided to form an ensemble
of the three best models. This seemed to perform only marginally better than the individual models.
Following on from the competition, I hope to train a single model with comparable performance.

The three models consisted of two convolutional networks using fractional max-pooling, 3 and
one based on the work of Simonyan and Zisserman4. The networks use 5-class softmax to predict
a class 0,1,2,3,4. The output probabilities are to be used as the input for a random forest.
github.com/btgraham/SparseConvNet/blob/kaggle_Diabetic_Retinopathy_competition/kaggleDiabetes1.cpp

github.com/btgraham/SparseConvNet/blob/kaggle_Diabetic_Retinopathy_competition/kaggleDiabetes2.cpp

github.com/btgraham/SparseConvNet/blob/kaggle_Diabetic_Retinopathy_competition/kaggleDiabetes3.cpp

2See the ILVSRC and Kaggle National Data Science Bowl competitions for ample evidence of this.
3Fractional max-pooling http://arxiv.org/abs/1412.6071
4K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition

7

github.com/btgraham/SparseConvNet/blob/kaggle_Diabetic_Retinopathy_competition/kaggleDiabetes1.cpp
github.com/btgraham/SparseConvNet/blob/kaggle_Diabetic_Retinopathy_competition/kaggleDiabetes2.cpp
github.com/btgraham/SparseConvNet/blob/kaggle_Diabetic_Retinopathy_competition/kaggleDiabetes3.cpp
http://arxiv.org/abs/1412.6071
http://arxiv.org/pdf/1409.1556.pdf

Radius *:=Pooling type Architecture Complexity
270 Pseudorandom 32C5-*-64C3-*-96C3-*- 2.7 million weights

fractional 128C3-*-160C3-*-192C3-*- 5 GigaMultiplyAdds/image
max pooling 3x3 224C3-*-256C3-*-228C3-*-

α = 1.8 320C2-352C1-5N
270 Pseudorandom 32C5-*-64C3-*-96C3-*-128C3-*- 6.1 million weights

fractional 160C3-*-192C3-*-224C3-*-256C3-*- 14 GigaMultiplyAdds/image
max pooling 3x3 228C3-*-320C3-*-352C3-*-384C3-*-

α = 1.5 416C2-448C1-5N
450 Max pooling 32C3-32C3-*-64C3-64C3-*-96C3-96C3-*- 3.0 million weights

3x3 128C3-128C3-*-160C3-160C3-*- 26 GigaMultiplyAdds/image
stride 2 192C3-192C3-*224C3-224C3-*-

288C2-288C2-320C1-5N

• For the �rst two networks, I used approximately 10% dropout in the �nal four layers. In-
creasing the number of feature vectors and using more dropout did not seem to help.

• Increasing the scale beyond 270 slowed down the processing without any apparent bene�t.

7 Predictions: From softmax to integer scores

For each image in the training and test sets, I averaged the probabilities over the di�erent networks
(and repeat tests) to give a single probability distribution. To create a larger feature vector, I
appended some meta-data

• the probability distribution for the person's other eye (left↔right),

• the size of the original images,

• the variance of the original images,

• the variance of the preprocessed images.

I then trained a random forest on the training images using scikits-learn. Classifying the test images
with the predict_proba function gave each test image a score in the range [0, 4]. Thresholding then
gave the �nal scores.

Using a random forest in this way is potentially dangerous. Ideally, the training data and test
data for a random forest should be homogeneous. This is not the case as for the training images,
we are using CNNs trained on those images, but with the test set we are using the same CNN, for
which the test images are unseen data. Luckily, there does not seem to be much over�tting, so the
approach worked.

Using a random forest here is probably over-kill. Using linear regression on just the CNN-
generated probability distributions, without any of the meta-data, also seems to work well.

Acknowledgements

Thank you very much to the competition organizers at Kaggle, to EyePACS for providing the
competition data and to the California Healthcare Foundation for sponsoring the competition.

8

Many thanks to everyone who discussed the competition on the Forum.
Finally, thanks to OpenCV and scikit-learn for making such useful software.

9

	Overview
	Software
	Cohen's Kappa
	Image preprocessing
	Data augmentation
	Network configurations
	Predictions: From softmax to integer scores

